1. Barrett, J., Peters, G., Wiedmann, T., Scott, K., Lenzen, M., Roelich, K., & Le Quéré, C. (2013). Consumption-based GHG emission accounting: A UK case study. Climate Policy, 13(4), 451–470. https://doi.org/10.1080/14693062.2013.788858
2. Brandi, A., Broadbent, A. M., Krayenhoff, E. S., & Georgescu, M. (2021). Influence of projected climate change, urban development and heat adaptation strategies on the end of twenty-first-century urban boundary layers across the Conterminous US. Climate Dynamics, 2021, 1–17.
3. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
4. Cairong, R. E. N., & Gang, X. I. E. (2019). Prediction of PM2.5 concentration level based on random forest and meteorological parameters. Computer Engineering and Applications, 55(2), 213–220.
5. Chen, Y., Hu, Q., Yang, Y., & Qian, W. (2017). Anomaly based analysis of extreme heat waves in Eastern China during 1981–2013. International Journal of Climatology, 37(1), 509–523.