Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment

Author:

Bandowe Benjamin A. MusaORCID,Shukurov NosirORCID,Leimer SophiaORCID,Kersten MichaelORCID,Steinberger YosefORCID,Wilcke WolfgangORCID

Abstract

AbstractThe concentrations, composition patterns, transport and fate of PAHs in semi-arid and arid soils such as in Central Asia are not well known. Such knowledge is required to manage the risk posed by these toxic chemicals to humans and ecosystems in these regions. To fill this knowledge gap, we determined the concentrations of 21 parent PAHs, 4,5-methylenephenanthrene, 6 alkylated PAHs, and biphenyl in soils from 11 sampling locations (0–10, 10–20 cm soil depths) along a 20-km transect downwind from the Almalyk metal mining and metallurgical industrial complex (Almalyk MMC), Uzbekistan. The concentrations of Σ29 PAHs and Σ16 US-EPA PAHs were 41–2670 ng g−1 and 29–1940 ng g−1, respectively. The highest concentration of Σ29 PAHs occurred in the immediate vicinity of the copper smelting factory of the Almalyk MMC. The concentrations in topsoil decreased substantially to a value of ≤ 200 ng g−1 (considered as background concentration) at ≥ 2 km away from the factory. Low molecular weight PAHs dominated the PAH mixtures at less contaminated sites and high molecular weight PAHs at the most contaminated site. The concentration of Σ16 US-EPA PAHs did not exceed the precautionary values set by the soil quality guidelines of, e.g., Switzerland and Germany. Similarly, the benzo[a]pyrene equivalent concentration in soils near the Almalyk MMC did not exceed the value set by the Canadian guidelines for the protection of humans from carcinogenic PAHs in soils. Consequently, the cancer risk due to exposure to PAHs in these soils can be considered as low.

Funder

Alexander von Humboldt-Stiftung

Max Planck Institute for Chemistry

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3