Spatial analysis of urine zinc (Zn) concentration for women of reproductive age and school age children in Malawi

Author:

Phiri Felix P.ORCID,Ander E. Louise,Lark R. Murray,Joy Edward J. M.,Kalimbira Alexander A.,Suchdev Parminder S.,Gondwe Jellita,Hamilton Elliott M.,Watts Michael J.,Broadley Martin R.

Abstract

AbstractZinc (Zn) is an essential micronutrient, and Zn deficiency remains a major global public health challenge. Recognised biomarkers of population Zn status include blood plasma or serum Zn concentration and proxy data such as dietary Zn intake and prevalence of stunting. Urine Zn concentration is rarely used to assess population Zn status. This study assessed the value of urine Zn concentration as a biomarker of population Zn status using a nationally representative sample of non-pregnant women of reproductive age (WRA) and school-aged children (SAC) in Malawi. Spot (casual) urine samples were collected from 741 WRA and 665 SAC. Urine Zn concentration was measured by inductively coupled plasma mass spectrometry with specific gravity adjustment for hydration status. Data were analysed using a linear mixed model with a spatially correlated random effect for between-cluster variation. The effect of time of sample collection (morning or afternoon), and gender (for SAC), on urine Zn concentration were examined. There was spatial dependence in urine Zn concentration between clusters among SAC but not WRA, which indicates that food system or environmental factors can influence urine Zn concentration. Mapping urine Zn concentration could potentially identify areas where the prevalence of Zn deficiency is greater and thus where further sampling or interventions might be targeted. There was no evidence for differences in urine Zn concentration between gender (P = 0.69) or time of sample collection (P = 0.85) in SAC. Urine Zn concentration was greater in afternoon samples for WRA (P = 0.003). Relationships between urine Zn concentration, serum Zn concentration, dietary Zn intake, and potential food systems covariates warrant further study.

Funder

Royal Society - DFID

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

Reference43 articles.

1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, & F. Csaki (Eds.), Proceedings of the 2nd international symposium on information theory (pp. 267–281). Budapest, Hungary: Akadémiai Kiadó.

2. Baer, M. T., & King, J. C. (1984). Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. American Journal of Clinical Nutrition, 39(4), 556–570.

3. Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics, 53(2), 603–618.

4. Canada, H. (2013). Second report on human biomonitoring of environmental chemicals in Canada. Ottawa: Health Canada.

5. Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., et al. (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 1, 72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3