Predicting significant wave height with artificial neural networks in the South Atlantic Ocean: a hybrid approach
Author:
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Pesquisas - CNPQ
Publisher
Springer Science and Business Media LLC
Subject
Oceanography
Link
https://link.springer.com/content/pdf/10.1007/s10236-023-01546-y.pdf
Reference35 articles.
1. Ardhuin F, Rogers E, Babanin A et al (2010) Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J Phys Oceanogr 40:1917. https://doi.org/10.1175/2010JPO4324.1
2. Browne M, Castelle B, Strauss D et al (2007) Near-shore swell estimation from a global wind-wave model: spectral process, linear, and artificial neural network models. Coast Eng 54(5):445–460. https://doi.org/10.1016/j.coastaleng.2006.11.007. http://www.sciencedirect.com/science/article/pii/S0378383906001840
3. Caires S, Sterl A (2005) 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J Clim 18(7):1032–1048. https://doi.org/10.1175/JCLI-3312.1. https://journals.ametsoc.org/jcli/article-pdf/18/7/1032/3796666/jcli-3312_1.pdf
4. Campos R, Guedes Soares C (2016) Hybrid model to forecast significant wave heights: Proceedings of the 3rd International Conference on Maritime Technology and Engineering. MARTECH 2016, Lisbon, Portugal, 4-6 July 2016 pp 1027–1035. https://doi.org/10.1201/b21890-138
5. Campos RM, Soares CG (2016) Comparison and assessment of three wave hindcasts in the North Atlantic Ocean. Journal of Operational Oceanography 9(1):26–44. https://doi.org/10.1080/1755876X.2016.1200249
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A two-module bias-correction model for sea wave hindcasting based on the long-short term memory neural network;Ocean Engineering;2024-11
2. A novel model for the study of future maritime climate using artificial neural networks and Monte Carlo simulations under the context of climate change;Ocean Modelling;2024-08
3. Artificial neural networks ensemble methodology to predict significant wave height;Ocean Engineering;2024-05
4. Multivariate GRU and LSTM models for wave forecasting and hindcasting in the southern Caspian Sea;Ocean Engineering;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3