Abstract
AbstractIn this paper we recover the best lower bound for the number of limit cycles in the planar piecewise linear class when one vector field is defined in the first quadrant and a second one in the others. In this class and considering a degenerated Hopf bifurcation near families of centers we obtain again at least five limit cycles but now from infinity, which is of monodromic type, and with simpler computations. The proof uses a partial classification of the center problem when both systems are of center type.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Agència de Gestió d’Ajuts Universitaris i de Recerca
Agencia Estatal de Investigación
Seventh Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference20 articles.
1. Anosov, D.: Stability of the equilibrium positions in relay systems. Autom. Remote Control 20(2), 130–143 (1959)
2. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 33(9), 3915–3936 (2013)
3. Buzzi, C.A., Medrado, J.C., Torregrosa, J.: Limit cycles in 4-star-symmetric planar piecewise linear systems. J. Differ. Equ. 268(5), 2414–2434 (2020)
4. Buzzi, C.A., Medrado, J.C.R., Teixeira, M.A.: Generic bifurcation of refracted systems. Adv. Math. 234, 653–666 (2013)
5. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Phys. D 337, 67–82 (2016)