Abstract
AbstractWe consider a class of polynomial systems of degree four with four real invariant straight lines that form a square, called this an invariant square, and also that contains in its interior at least five small amplitude limit cycles for a certain choice of the parameters. Moreover, we will obtain the necessary and sufficient conditions for the critical point inside the square to be a center.
Funder
Agencia Estatal de Investigación
Agéncia de Gestió d’Ajuts Universitaris i de Recerca
Universitat de Lleida
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Artés, J., Grünbaum, B., Llibre, J.: On the number of invariant straight lines for polynomial differential systems. Pacific J. Math. 184, 317–327 (1998)
2. Xikang, Z.: Number of integral lines of polynomial systems of degree three and four. J. Nanying Univ. Math. Biquart. 10, 209–212 (1993)
3. Sokulski, J.: On the number of invariant lines of polynomial fields. Nonlinearity 9, 479–485 (1996)
4. Li, M., Han, M.: On the number of limit cycles of a quartic polynomial system. Discrete Contin. Dyn. Syst. Ser. S 14, 3167–3181 (2021)
5. Kooij, R.: Limit cycles in polynomial systems, thesis. University of Technology, Delft (1993)