Abstract
AbstractWe study the one-dimensional Fermi–Ulam ping-pong problem with a Bohr almost periodic forcing function and show that the set of initial condition leading to escaping orbits typically has Lebesgue measure zero.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference30 articles.
1. Besicovitch, A.S.: On generalized almost periodic functions. Proc. Lond. Math. Soc. s2–25(1), 495–512 (1926)
2. Biasi, C., Gutierrez, C., dos Santos, E.L.: The implicit function theorem for continuous functions. Topol. Methods Nonlinear Anal. 32(1), 177–185 (2008)
3. Bell, H., Meyer, K.: Limit periodic functions, adding machines, and solenoids. J. Dyn. Differ. Equat. 7, 409–422 (1995)
4. Bochner, S.: Beiträge zur Theorie der fastperiodischen Funktionen. Math. Ann. 96(1), 119–147 (1927)
5. Bohr, H.: Zur Theorie der fast periodischen Funktionen. Acta Math. 45, 29–127 (1925)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献