Dynamics Behaviours of Kink Solitons in Conformable Kolmogorov–Petrovskii–Piskunov Equation

Author:

Ullah Ikram,Shah Kamal,Abdeljawad Thabet,Alam Mohammad Mahtab,Hendy Ahmed S.,Barak Shoaib

Abstract

AbstractThe current study introduces the generalised New Extended Direct Algebraic Method (gNEDAM) for producing and examining propagation of kink soliton solutions within the framework of the Conformable Kolmogorov–Petrovskii–Piskunov Equation (CKPPE), which entails conformable fractional derivatives into account. The primary justification around employing conformable derivatives in this study is their special ability to comply with the chain rule, allowing for in the solution of aimed nonlinear model. The CKPPE is a crucial model for a number of disciplines, such as mathematical biology, reaction-diffusion mechanisms, and population increase. CKPPE is transformed into a Nonlinear Ordinary Differential Equation by the proposed gNEDAM, and many kink soliton solutions are found by applying the series form solution. These kink soliton solutions shed light on propagation mechanisms within the framework of the CKPPE model. Furthermore, our research offers multiple graphical depictions that facilitate the examination and analysis of the propagation patterns of the identified kink soliton solutions. Through the integration of mathematical biology and reaction-diffusion principles, our research broadens our comprehension of intricate occurrences in various academic domains.

Funder

Sefako Makgatho Health Sciences University

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Ali, R., Zhang, Z., Ahmad, H.: Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study. Opt. Quant. Electron. 56(5), 1–31 (2024)

2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Accademic Press, New York (1993)

3. Elizarraraz, D., Verde-Star, L.: Fractional divided differences and the solution of differential equations of fractional order. Adv. Appl. Math. 24(3), 260–283 (2000)

4. He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

5. Gaber, A., Ahmad, H.: Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov method. Facta Univ. Ser. Math. Inf. 2021, 1439–1449 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3