The ferrocenium/ferrocene couple: a versatile redox switch

Author:

Fabbrizzi LuigiORCID

Abstract

Abstract Woodward and co-workers in 1952 characterised the unique structural features of ferrocene (the first sandwich compound), demonstrated its aromatic nature and observed that on treatment with mild oxidising agents (aqueous Ag2SO4, p-benzoquinone in organic solvents) the orange solution of ferrocene (Fc) turned blue due to the formation of ferrocenium (Fc+). A few months later, the one-electron Fc/Fc+ redox change was characterised polarographically by Page and Wilkinson with E1/2 = 0.31 V vs SCE (0.56 V vs NHE) in ethanol/water 9:1. Since then ferrocene has become an icon of organometallic electrochemistry. Owing to the stability of its molecular framework, to the ease of functionalisation at the cyclopentadienyl rings and to the fast, reversible and kinetically uncomplicated Fc/Fc+ redox change, ferrocene has been used as a building block for the design of switchable functional systems. In this review, we will consider (1) electrochemical sensors for metal ions, anions and metal–anion pairs operating through the Fc/Fc+ redox change, (2) ferrocene-based redox switches of fluorescence and (3) cross-transport of electrons and anions through a liquid membrane mediated by lipophilic ferrocene derivatives. Graphic abstract

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,General Chemistry

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3