Inorganic ligands-mediated hole attraction and surface structural reorganization in InP/ZnS QD photocatalysts studied via ultrafast visible and midinfrared spectroscopies

Author:

Liu Yang,Zhou Ying,Abdellah Mohamed,Lin Weihua,Meng Jie,Zhao Qian,Yu Shan,Xie Zhanghui,Pan Qinying,Zhang Fengying,Pullerits Tonu,Zheng Kaibo

Abstract

AbstractPhotoinduced carrier dynamical processes dominate the optical excitation properties of photocatalysts and further determine the photocatalytic performance. In addition, as the electrons generally possess a faster transfer rate than holes, hole transfer and accumulation are critical, and they play the key efficiency-limiting step during the photocatalytic process. Therefore, a comprehensive understanding of the dynamics of photogenerated holes and their determining factors in the photocatalytic system is highly essential to rationalize the full catalytic mechanism and develop highly efficient photocatalysts, which have not yet been revealed. In this work, the photoinduced charge carrier dynamics in InP/ZnS quantum dots (QDs) capped with long-chain L-typed ligands (oleylamine) and inorganic ligands (sulfide ion (S2−)) were explored. Time-resolved photoluminescence and femtosecond transient-absorption spectroscopy unambiguously confirmed the ultrafast hole transfer from the InP core to S2− ligands. Moreover, by probing the bleach of vibrational stretching of the ligands with transient midinfrared absorption spectroscopy, the hole transfer time was determined to be 4.2 ps. The injected holes are long-lived at the S2− ligands (>4.5 ns), and they can remove electrostatically attached surfactants to compensate for the spatial charge redistribution. Finally, compared with other inorganic ligands such as Cl and PO43−, S2− balances the ionic radii and net charge to ensure the optimal condition for charge transfer. Such observation rationalizes the excellent photocatalytic H2 evolution (213.6 µmol mg−1 within 10 h) in InP/ZnS QDs capped with S2− compared with those capped with other ligands and elucidates the role of surface ligands in the photocatalytic activity of colloidal QDs.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3