Metabolic signatures derived from whole-brain MR-spectroscopy identify early tumor progression in high-grade gliomas using machine learning

Author:

Rivera Cameron A.,Bhatia Shovan,Morell Alexis A.,Daggubati Lekhaj C.,Merenzon Martin A.,Sheriff Sulaiman A.,Luther Evan,Chandar Jay,S. Levy Adam,Metzler Ashley R.,Berke Chandler N.,Goryawala Mohammed,Mellon Eric A.,Bhatia Rita G.,Nagornaya Natalya,Saigal Gaurav,I de la Fuente Macarena,Komotar Ricardo J.,Ivan Michael E.,Shah Ashish H.

Abstract

Abstract Purpose Recurrence for high-grade gliomas is inevitable despite maximal safe resection and adjuvant chemoradiation, and current imaging techniques fall short in predicting future progression. However, we introduce a novel whole-brain magnetic resonance spectroscopy (WB-MRS) protocol that delves into the intricacies of tumor microenvironments, offering a comprehensive understanding of glioma progression to inform expectant surgical and adjuvant intervention. Methods We investigated five locoregional tumor metabolites in a post-treatment population and applied machine learning (ML) techniques to analyze key relationships within seven regions of interest: contralateral normal-appearing white matter (NAWM), fluid-attenuated inversion recovery (FLAIR), contrast-enhancing tumor at time of WB-MRS (Tumor), areas of future recurrence (AFR), whole-brain healthy (WBH), non-progressive FLAIR (NPF), and progressive FLAIR (PF). Five supervised ML classification models and a neural network were developed, optimized, trained, tested, and validated. Lastly, a web application was developed to host our novel calculator, the Miami Glioma Prediction Map (MGPM), for open-source interaction. Results Sixteen patients with histopathological confirmation of high-grade glioma prior to WB-MRS were included in this study, totaling 118,922 whole-brain voxels. ML models successfully differentiated normal-appearing white matter from tumor and future progression. Notably, the highest performing ML model predicted glioma progression within fluid-attenuated inversion recovery (FLAIR) signal in the post-treatment setting (mean AUC = 0.86), with Cho/Cr as the most important feature. Conclusions This study marks a significant milestone as the first of its kind to unveil radiographic occult glioma progression in post-treatment gliomas within 8 months of discovery. These findings underscore the utility of ML-based WB-MRS growth predictions, presenting a promising avenue for the guidance of early treatment decision-making. This research represents a crucial advancement in predicting the timing and location of glioblastoma recurrence, which can inform treatment decisions to improve patient outcomes.

Funder

NIH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3