Applications of advanced oxidative processes for the recovery of water from bilge water

Author:

Fontana D.ORCID,Cardenia C.,Pietrantonio M.,Pucciarmati S.,Forte F.

Abstract

AbstractIn the present study, two different advanced oxidation processes, the Fenton reaction and titanium dioxide photocatalysis process, were tested and compared with the aim of water recovery from bilge water. A suitable analytical method was developed in order to evaluate the efficiency of the processes. Wastewater and process products were characterized using analysis of the total carbon content, elemental analysis and permanganometry. The experimental tests were performed both on synthetic samples and on the real matrix. The percentages of carbon abatement in bilge water after the Fenton reaction and titanium dioxide photocatalysis were 67% and 64%, respectively. The Fenton reaction efficiency increased to 95% when the bilge water aqueous phase was pretreated by flocculation using a polyelectrolyte. This combined process can be considered as a valid method to treat bilge water which can then be discharged directly into the sea, sewer, or may be reused as gray water.

Funder

Ente per le Nuove Tecnologie, l'Energia e l'Ambiente

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3