Nitrification kinetics, N2O emission, and energy use in intermittently aerated hybrid reactor under different organic loading rates

Author:

Zajac O.ORCID,Zubrowska-Sudol M.

Abstract

AbstractThis study investigated the impact of intermittent aeration strategies and reduction in the reactor’s organic and nitrogen loading rates on the course of particular stages of the nitrification process, as well as energy consumption and N2O emissions in a hybrid reactor with nitrification/denitrification. Each of the analysed series revealed the greatest ammonia oxidation activity in activated sludge flocs. The highest activity of nitrite nitrogen oxidation was demonstrated in the case of biofilm. A reduction in the reactor’s organic and nitrogen loading rate value had a greater effect on changes in the activity of ammonia-oxidizing bacteria than nitrite-oxidizing bacteria. In a system where the operation of air pumps was controlled through switching them and off according to the adopted ratio between non-aerated and aerated sub-phase times and the assumed oxygen concentration, a reduction in the duration of aerated sub-phases caused no decrease in energy use for aeration. Lower N2O emission was recorded when the reactor operated with a longer duration of aerated sub-phases.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3