Decarbonization of Arthrospira platensis production by using atmospheric CO2 as an exclusive carbon source: proof of principle

Author:

Jung C. G. H.,Nghinaunye T.,Waldeck P.,Braune S.,Petrick I.,Küpper J.-H.,Jung F.

Abstract

AbstractThere is an urgent need to develop technologies for removing CO2 from the atmosphere to combat climate change. Microalgae and cyanobacteria, such as Arthrospira platensis (AP), have shown promise due to their high photoautotrophic biomass production. Conventional AP culture media are supplemented with high concentrations of NaHCO3 since AP utilizes $${\text{HCO}}_{3}^{ - }$$ HCO 3 - as a carbon source. These culture conditions result in significant amounts of CO2 escaping into the atmosphere, instead of being sequestered during cultivation. Here, we investigated whether ambient air (0.042% CO2) can be used for growing AP in a culture medium lacking a fossil-based carbon source. AP was cultured in 2 L glass bioreactors containing: (1) Zarrouk medium with 16.8 g/L NaHCO3 and aeration with 0.236 vvm air with 2% CO2 (“NaHCO3/CO2-based”) to compensate carbon loss due to CO2 outgassing, and (2) Zarrouk medium without NaHCO3 and a gas flow with ambient air (0.926 vvm) as the only carbon source (“air-based”). The air-based production resulted in the biofixation of 3.78 gCO2/L during the linear growth phase. With NaHCO3/CO2-based production, a comparable amount of 3.42 gCO2/L was obtained while 659.12 g of CO2 was released into the atmosphere. Total protein, phycocyanin, chlorophyll-a, and carotenoids were present in similar or increased amounts in AP produced by the air-based method. We concluded that cultivation of AP with Zarrouk medium lacking NaHCO3 but using ambient air with atmospheric CO2 as the only carbon source is possible without reducing productivity. These results improve our understanding of how atmospheric CO2 can be reduced by culturing AP.

Funder

Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3