Pyrolysis of biosolids with waste cardboard: effect of operating parameters, feedstock size and blending ratio

Author:

Zuhara S.ORCID,Pradhan S.,McKay G.

Abstract

AbstractGlobal waste is a rising problem that requires attention. Pyrolysis is a process that converts waste into valuable products like biochar, bio-oil, and gas by heating feeds above 300 °C. Pyrolysis studies mostly concentrate on fuel production and characterization, while biochar studies lack parametric analysis, especially for co-pyrolysis. Little attention is given to the effects of blending ratio and particle size on biochar yield. This research focuses on the pyrolysis of biosolids obtained from gas-to-liquid wastewater treatment, waste cardboard, and co-pyrolysis of blended samples. Pyrolysis was performed using a muffled furnace at temperatures ranging from 350–850 °C , heating rates of 3–10 °C /min, and residence times of 30–180 min to examine biochar yield and properties. Particle sizes and blending ratios were also studied. Proximate and ultimate analyses, metal composition, surface area, and surface charge studies were conducted on biochar samples utilizing analytical instruments. Biosolids had the highest yield followed by mixed samples and cardboard for all conditions, with temperature and blending ratio having the greatest impact on yield. Regarding surface area, the maximum was found to be at 650 °C revealing 10.34, 170.4, and 124.8 m2/g for biosolids, cardboard, and mixed samples, respectively. A significant effect with change in blending ratio and a minimal effect by varying particle size was observed on the biochar yield. For future applications, temperatures below 550 °C can be considered in terms of biochar yield, ash, and metal contents; as heating rate and residence time showed minimal effects on yield, lower points are preferred to conserve energy during pyrolysis. Overall, mixing waste improved quality and yield, making it environmentally beneficial for applications. Graphical abstract

Funder

Qatar National Research Fund

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3