Influence of co-substrate existence, temperature, pH, and salt concentration on phenol removal, desalination, and power generation using microbial desalination cells

Author:

Safwat S. M.ORCID,Meshref M. N. A.,Salama M.,Elawwad A.

Abstract

AbstractMicrobial desalination cells (MDCs) exhibited an economical value with large promises as a useful desalination treatment solution. MDCs threefold applications to efficiently treat wastewater and to produce electricity and simultaneously accomplish desalination were investigated in this work. The study examined the influence of various performance parameters including co-substrate, temperature, pH, and salt concentrations on the response of three-chamber MDCs with respect to energy recovery and contaminant removal (Phenol). The system evaluation criteria encompassed chemical oxygen demand (COD), phenol removal efficiency, Coulombic efficiency, desalination efficiency, and other system parameters such as voltage generation and power density. The maximum COD and phenol removal efficiencies obtained at temperature = 37 °C, pH = 7, and salt concentration = 10,000 ppm, were 80% and 74%, respectively. The maximum Coulombic efficiency was 5.3% and was observed at temperature = 18 °C, pH = 7, and salt concentration = 10,000 ppm. The results show that the presence of a co-substrate improved power density; the maximum power density obtained was 52.9 mW/m2. The principal component analysis elucidated the impact of pH on COD and phenol removal rates. With our findings confirmed trends in the improvement of the voltage generation, COD and phenol removal efficiencies with the addition of a co-substrate, the temperature and pH increase.

Funder

Science and Technology Development Fund

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3