Phytoplankton community structure and water quality assessment in an ecological restoration area of Baiyangdian Lake, China

Author:

Zhu H.ORCID,Liu X. G.,Cheng S. P.

Abstract

AbstractShihoudian Lake is one of the ecological restoration engineering pilot sites of Baiyangdian Lake, China. To evaluate the phytoplankton characteristics and eutrophication status in Shihoudian Lake, we investigated the community structure of phytoplankton, including the species composition, density, biomass dominance, biodiversity and water quality parameters, in autumn 2018 and spring and summer 2019. The relationships between the community structure and the main environmental factors were analysed using a multivariate statistical method. A total of 143 species of phytoplankton were identified, belonging to 53 genera and eight phyla, and Cyanophyta and Prochlorophyta were the most dominant phyla. Both the density and the biomass were the highest in the summer. A redundancy analysis showed that total phosphorus and chemical oxygen demand were the primary influencing factors of the community distribution of Cyanophyta. Evaluation of the comprehensive diversity index and water quality index revealed that the water of Shihoudian Lake was lightly to moderately polluted, providing scientific evidence for eco-environmental protection and remediation.

Funder

National Key R&D Program of China

Agricultural technology experiment demonstration and service support

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3