Comparison of emissions from smokeless coal combustion in a household heating boiler used in Central Europe

Author:

Knigawka P.,Pianko-Oprych P.ORCID,Krpec K.,Kuboňová L.

Abstract

AbstractThe objective of this work was to evaluate the relationship between the fuel quality and the gaseous and particulate pollutant emissions generated from a hot-water boiler during the combustion of different types of innovative processed fuels: smokeless coal, smokeless briquettes 1–3, smokeless pellets and unprocessed hard coal. The aim of our research was to prove the presumption that smokeless processed coals produce less gaseous and particulate emissions. By using modern fuels in already used and manufactured older boilers, there is a possibility to significantly reduce emissions of organic gaseous compounds (OGC) and polycyclic aromatic hydrocarbons (PAHs). The emission situation in the heating season can be significantly improved even without costly production, and thus consumption of natural resources and energy, and installation of modern boilers. Physical and chemical characterization of solid-fuel samples, including determination of moisture content, ash, volatile organic content, calorific value and elemental composition analysis, were performed. Fuels were burned in one type of hot-water boiler class 1 according to EN 303-5 to determine the impact of applied fuel types on pollutant emissions. The pollutant emissions were characterized by the contents of gaseous components: nitrogen oxides NOx, sulfur dioxide SO2, carbon monoxide CO, carbon dioxide CO2, organic gaseous compounds OGC and particle components: total suspended particles TSP, particulate matter less than 2.5 µm and 10 µm (PM2.5 and PM10, respectively) and polycyclic aromatic hydrocarbons PAHs in both phases. The emission factors from six types of fuel were compared with applicable European standards. The lowest NOx content was observed for smokeless briquette 1, while the lowest SO2 content was observed for smokeless pellets. The emission of CO was at a similarly low level of 200 g/kg for smokeless briquette 1, smokeless briquette 2 and hard coal. Gaseous and pollutant emissions described by PM2.5 and TSP were observed to be the lowest for smokeless coal, smokeless briquette 1 and smokeless briquette 2.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

European Regional Development Fung/European Social Fund

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

Reference36 articles.

1. Arslan O, Özdalyan B (2020) Influence of fuel types and combustion environmnet on emissions of VOCs from combustion sources: a review. MSU J Sci 8(1):747–756

2. CEN (2012) Heating boilers: Part 5—Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW—Terminology, requirements, testing and marking. European Committee for Standardization

3. Chen Q, Zhang X, Bradford D, Sharifi V, Swithenbank J (2010) Comparison of emission characteristics of small-scale heating systems using biomass instead of coal. Energy Fuels 24(4255–4265):42. https://doi.org/10.1021/ef100491v

4. Cofala J, Klimont Z (2012) Emissions from households and other small combustion sources and their reduction potential

5. EEA (2019) EMEP/EEA air pollutant emission inventory guidebook 2019. Publications Office of the European Union, Luxembourg

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3