Removal of oil spills from aqueous systems by polymer sorbents

Author:

Hailan S. M.,Krupa I.,McKay G.

Abstract

AbstractThis review deals with the applicability of polymeric sorbents in removing spilled free oil from water surfaces. The theoretical framework covers the sorption ability of polymeric materials in general, respecting their size and morphology; however, the main focus is on polyolefins, primarily various grades of polyethylene (PE) and polypropylene (PP), including PE and PP waste. The core motivation associated with recycling polyethylene LDPE is the low interest in plastic convertors and the limited marketability of these commodities. The scientific focus in this area is on the development of new products having at least two general features: i) a specific application that does not require high mechanical performance, and ii) the material has a unique functionality that is not significantly influenced by using a recyclate against the use of the pristine polymer. Recycled polyolefins fully satisfied these requirements. This review pays special attention to the theoretical aspects of polymeric sorbents. Specific features of sorbents are analyzed depending on their geometry and morphology, involving powders, membranes/mats, and 3D foams (sponges)/gels. The wettability and sorption mechanisms regarding the chemical composition of materials, their surface topology, and internal porosity are discussed in detail. The presented manuscript emphasizes the close connection between materials’ behavior and properties, which is crucial for efficient oil/water separation and the theoretical modeling of adsorption and absorption processes. The focus on the physical aspects of materials from a theoretical point of view is highlighted, enabling a complex understanding of the oil/water separation processes.

Funder

Qatar National Research Fund

Qatar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3