Benchmarking of scaling and fouling of reverse osmosis membranes in a power generation plant of paper and board mill: an industrial case of a paper and board mill study

Author:

Zaidi S. Z. J.ORCID,Shafeeq A.,Sajjad M.,Hassan S.,Aslam M. S.,Saeed T.,Walsh F. C.

Abstract

AbstractThe present study reports the characterization of reverse osmosis (RO) technology at water treatment plant Cogen-2 in paper and Board mills, Pakistan. RO is a commonly used process to obtain de-mineralized water for high-pressure boiler operation in thermal power plants. Scaling and fouling in three-stage RO plants is a major challenge in chemical industry due to the use of raw brackish water in the power plant of paper and board mills. In our study, the feed water quality of RO was changed from soft water to raw water to make it economical. The cleaning frequency was increased three times than normal, which was unsafe for operation and it was required to control scaling and fouling to achieve the desired result. Differential pressures behavior of all stages for 2-month data was observed without acid treatment, and the results of Langelier Saturation Index (LSI) control parameters (temperature, pH, total dissolved solids, calcium hardness, and alkalinity) clearly showed the abnormality. To optimize scaling and fouling of RO, the LSI factor was controlled in total reject water for the next 2 months by acid treatment in feed water. Duration of chemical cleaning and membranes’ life has been extended by fouling and scaling control. Understanding the effect of operational parameters in RO membranes is essential in water process engineering due to its broad applications in drinking water, sanitation, seawater, desalination process, wastewater treatment, and boiler feed water operation. The product flow increased from 18.3 to 19.9 m3/h, and this was due to a decrease in the rejection flow from 8.2 to 6.7 m3/h. The total reject stream pressure also increased from 8.1 to 9 bar. A lower value of LSI of 1.6 is obtained in the reject water stream after the acid treatment.

Funder

University of Southampton

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3