Effect of temperature variations in anaerobic fluidized membrane bioreactor: membrane fouling and microbial community dynamics assessment

Author:

Theuri S.ORCID,Gurung K.,Puhakka V.,Anjan D.,Sillanpaa M.

Abstract

AbstractA single-stage anaerobic fluidized membrane bioreactor (AnFMBR) was applied to investigate the effects of temperature changes on membrane fouling while treating real municipal wastewater. The AnFMBR was operated at four temperature phases: 25 °C for 42 days, 20 °C for 20 days, 15 °C for 15 days, and at 10 °C for 15 days. The systems achieved a total chemical oxygen demand (TCOD) removal efficiency of above 90% at all phases. As temperature decreased, accumulation of solids and possible incomplete hydrolysis led to an increase in TCOD and volatile fatty acids (VFAs) in the reactor. However, as temperature reduced to 10 °C, VFAs in the reactor reduced probably an indication of reactors adaptation. Total membrane filtration resistance gradually increased to 1.1 × 1011 m−1 from 2.1 × 1009 m−1 with a temperature decrease from 25 °C to 10 °C. This corresponded to a significant decrease in membrane permeability from 1.68 to 0.05 LMH/kpa. The protein fraction of the extracellular polymeric substances (EPS) was dominant in all phases, which was ascribed for significant membrane fouling causing permeability deterioration. Microbial richness and diversity analysis using next generation Ion torrent sequencing methods revealed that Proteobacteria phylum was most dominant at 25 °C, whereas Bacteroidetes, which are responsible for releasing proteinaceous EPS, were most dominant at low temperatures (15 °C and 10 °C), contributing to severe fouling. In conclusion, decrease in temperature did not affect the treatment efficiency but resulted in gradual increase in membrane fouling.

Funder

Regional Council of South Savo

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3