Insights into the generation of hydroxyl radicals from H2O2 decomposition by the combination of Fe2+ and chloranilic acid

Author:

Ahmad M. I.,Bensalah N.

Abstract

AbstractIn this work, the degradation of chloranilic acid (CAA) by chemical oxidation with H2O2 alone and in the presence of ferrous iron Fe2+ catalyst was investigated in order to improve our understanding on the novel metal-independent approach. The interesting and efficient metal-independent hydroxyl radicals (OH) production by using halogenated quinones and H2O2 has been currently demonstrated. The results clearly confirmed the formation of OH radicals from the reaction of CAA with H2O2. CAA was slowly decayed by chemical oxidation with H2O2 and followed a pseudo-first kinetics. H2O2 doses ≥ 1000 mM were required to achieve complete CAA decay from 1 mM CAA. However, low total organic carbon (TOC) removal was measured with the accumulation of carboxylic acids. The addition of Fe2+ enhanced the kinetics of CAA degradation and reduced the required dose of H2O2. High TOC removal was obtained, almost complete release of chloride ions, without accumulation of carboxylic acids. The decolorization of methylene blue (MB) aqueous solutions was performed using H2O2, H2O2/CAA, H2O2/Fe2+, and H2O2/CAA/Fe2+. H2O2/CAA/Fe2+ was the most effective method in decolorizing MB solutions due to the accelerated Fe2+ regeneration. Coupling Fenton reagent with CAA seems to be promising alternative to physical activation in water and soil treatment.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3