A biochar selection method for remediating heavy metal contaminated mine tailings

Author:

Ippolito J. A.ORCID,Ducey T. F.,Spokas K. A.,Trippe K. M.,Johnson M. G.

Abstract

AbstractApproximately 390,000 abandoned mines across the US pose considerable, pervasive risks to human and environmental health; world-wide the problem is even greater. Lime, organic materials, and other amendments have been used to decrease metal bioavailability (e.g., Cd, Cu, Mn, Ni, Zn) in contaminated mine wastes and to promote plant community establishment for tailings stabilization. Biochar properties (e.g., alkaline pH, metal sorbing capabilities, available nutrients, improved soil water retention) make it a potential amendment for remediating metal contaminated mine tailings. A three-step procedure was developed to identify biochars that were most effective at reducing heavy metal availability, retaining metals, and subsequently selecting biochars for use in a soil amendment laboratory trial to ultimately be utilized in heavy metal contaminated mine land settings: Step (1) a synthetic precipitation leaching procedure extract of mine tailings was produced, representing potentially available metals, and used to identify metal removal properties of 28 different biochars (e.g., made from various feedstocks and pyrolysis or gasification conditions); Step (2) evaluate how well biochars retained previously sorbed metals; and Step (3) laboratory evaluation of the most promising biochars that removed and did not releases metals, applied at 0, 1, 2.5, and 5% (by wt) to mine tailings for reducing metal bioavailability. The reported methodology and results from this study could be used to quickly identify specific biochars and application rates to reduce mine tailings metal availability and aid in future remediation of abandoned mine sites globally.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3