Assessment of polyhydroxyalkanoates and polysaccharides production in native phototrophic consortia under nitrogen and phosphorous-starved conditions

Author:

Romero-Frasca E.ORCID,Buitrón G.ORCID

Abstract

AbstractGrowing demand for sustainable and eco-friendly alternatives to petroleum-based polymers has increased the interest in the microalgae-based production of polymers, specifically polyhydroxyalkanoates and polysaccharides. While most studies in microbial polymer production have primarily focused on axenic or genetically engineered cultures of cyanobacteria and eukaryotic algae, little is known about the potential of mixed phototrophic consortia. This study aimed to obtain and evaluate mixed photosynthetic consortia of different origins (natural and residual) as a novel approach for polyhydroxyalkanoates and polysaccharides accumulation. Activated sludge and freshwater samples were collected and inoculated in lab-scale photobioreactors to generate mixed photosynthetic consortia. After a preliminary screening for polymer-accumulating strains under nutrient-unbalanced conditions, the selected strains were subjected to a biphasic strategy (biomass accumulation and nutrient stress) to evaluate their polyhydroxyalkanoates and polysaccharide accumulation. First, cultures were subjected to a nutrient-rich phase to increase the biomass content and then deprived of nutrients (known as the polymer accumulation phase) to evaluate polyhydroxyalkanoates and polysaccharide yield. Findings in this study revealed that the highest polysaccharide yield for activated sludge biomass and freshwater consortia was 460 ± 16 and 320 ± 24 mg glucose g dried biomass−1, respectively. In contrast, the highest polyhydroxyalkanoates accumulation levels for both cultures were calculated at 5 mg polyhydroxyalkanoates g dried biomass−1. The efficacy of nutrient stress as a selective pressure strategy to develop mostly polysaccharides-accumulating consortia was demonstrated.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3