Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Alkandari, Y., Ijaz, M., Ekpo, S., Adebisi, B., Soto, I., Zamorano-Illanes, R., & Azurdia, C. (2023). Optimization of visible light positioning in industrial applications using machine learning. In 2023 South American conference on visible light communications (SACVLC), pp. 141–146, https://doi.org/10.1109/SACVLC59022.2023.10347641.
2. Chakraborty, A., Singh, A., Bohara, V. A., & Srivastava, A. (2022). On estimating the location and the 3-d shape of an object in an indoor environment using visible light. IEEE Photonics Journal, 14(4), 1–11. https://doi.org/10.1109/JPHOT.2022.3186793
3. Chen, G., Jian-Hua, S., Wei, K., & Chun-Yan, Z. (2018). A visible light indoor positioning algorithm based on fingerprint. In 2018 4th Annual international conference on network and information systems for computers (ICNISC). IEEE, https://doi.org/10.1109/icnisc.2018.00022.
4. do Nascimento, M. R. F. (2023). Visible light localization system for indoor environments based on an illuminance estimator. In Master’s in electrical engineering, Federal University of Juiz de Fora, Juiz de Fora. Available in Portuguese at https://repositorio.ufjf.br/jspui/handle/ufjf/15267.
5. do Nascimento, M. R. F., Coutinho, O. G. G., Olivi, L. R., & Soares, G. M. (2022). An indoor localization technique based on visible light communication. In 2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON). IEEE, https://doi.org/10.1109/oncon56984.2022.10126926.