Author:
Hewitt Stephen,Kristinsson Jon,Aasheim Erlend Tuseth,Blom-Høgestøl Ingvild Kristine,Aaseth Eirik,Jahnsen Jørgen,Eriksen Erik Fink,Mala Tom
Abstract
Abstract
Purpose
Secondary hyperparathyroidism (SHPT) after obesity surgery may affect bone health. Optimal vitamin D levels have not been established to prevent SHPT postoperatively. We investigated whether SHPT differed across threshold levels of serum 25-hydroxyvitamin D (S-25(OH)D) from 6 months up to 5 years after Roux-en-Y gastric bypass (RYGB).
Materials and Methods
We included 554 patients at follow-up 5 years postoperatively. Blood samples were analysed for S-25(OH)D, ionized calcium (iCa) and parathyroid hormone (PTH) during follow-up.
Results
PTH and prevalence of SHPT increased from 6 months to 5 years postoperatively, while S-25(OH)D and iCa decreased (all P < 0.001). PTH and SHPT development are related with S-25(OH)D, and PTH differed between all subgroups of S-25(OH)D. SHPT occurred less frequently across all subgroups of S-25(OH)D ≥ 50 nmol/l during follow-up: odds ratio (OR) 0.44 (95% CI 0.36–0.54) in patients with S-25(OH)D ≥ 50 nmol/l, OR 0.38 (0.30–0.49) with S-25(OH)D ≥ 75 nmol/l and OR 0.19 (0.12–0.31) with S-25(OH) D ≥ 100 nmol/l, all compared with S-25(OH)D < 50 nmol/l. At 5 years, 208/554 patients (38%) had SHPT; SHPT was found in 94/188 patients (50%) with S-25(OH)D < 50 nmol/l, in 69/222 (31%) with S-25(OH)D 50–74 nmol/l, in 40/117 (34%) with S-25(OH)D 75–99 nmol/l and in 5/27 (19%) with S-25(OH)D ≥ 100 nmol/l. An interaction existed between S-25(OH)D and iCa. Bone alkaline phosphatase remained increased with SHPT.
Conclusions
A significant relationship existed between S-25(OH)D and development of PTH and SHPT. The prevalence of SHPT was lower with threshold levels 25(OH)D ≥ 50 nmol/l and ≥ 75 nmol/l over the 5 years, and lowest with S-25(OH)D ≥ 100 nmol/l.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Surgery
Reference37 articles.
1. Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity. 2009;17(Suppl 1):S1–S70.
2. Busetto L, Dicker D, Azran C, et al. Obesity Management Task Force of the European Association for the study of obesity released “practical recommendations for the post-bariatric surgery medical management”. Obes Surg. 2018;28(7):2117–21.
3. Via MA, Mechanick JI. Nutritional and micronutrient care of bariatric surgery patients: current evidence update. Curr Obes Rep. 2017;6(3):286–96.
4. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Surg Obes Relat Dis. 2013;9(2):159–91.
5. Parrott J, Frank L, Rabena R, et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the surgical weight loss patient 2016 update: micronutrients. Surg Obes Relat Dis. 2017;13(5):727–41.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献