Artificial Intelligence in Bariatric Surgery: Current Status and Future Perspectives

Author:

Bektaş Mustafa,Reiber Beata M. M.,Pereira Jaime Costa,Burchell George L.,van der Peet Donald L.

Abstract

Abstract Background Machine learning (ML) has been successful in several fields of healthcare, however the use of ML within bariatric surgery seems to be limited. In this systematic review, an overview of ML applications within bariatric surgery is provided. Methods The databases PubMed, EMBASE, Cochrane, and Web of Science were searched for articles describing ML in bariatric surgery. The Cochrane risk of bias tool and the PROBAST tool were used to evaluate the methodological quality of included studies. Results The majority of applied ML algorithms predicted postoperative complications and weight loss with accuracies up to 98%. Conclusions In conclusion, ML algorithms have shown promising capabilities in the prediction of surgical outcomes after bariatric surgery. Nevertheless, the clinical introduction of ML is dependent upon the external validation of ML.

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3