Abstract
Abstract
Purpose
Metabolic surgery remains underutilized for treating type 2 diabetes, as less invasive alternative interventions with improved risk profiles are needed. We conducted a pilot study to evaluate the feasibility of a novel magnetic compression device to create a patent limited caliber side-to-side jejunoileal partial diversion in a nonhuman primate model.
Materials and Methods
Using an established nonhuman primate model of diet-induced insulin resistance, a magnetic compression device was used to create a side-to-side jejunoileal anastomosis. Primary outcomes evaluated feasibility (e.g., device mating and anastomosis patency) and safety (e.g., device-related complications). Secondary outcomes evaluated the device’s ability to produce metabolic changes associated with jejunoileal partial diversion (e.g., homeostatic model assessment of insulin resistance [HOMA-IR] and body weight).
Results
Device mating, spontaneous detachment, and excretion occurred in all animals (n = 5). There were no device-related adverse events. Upon completion of the study, ex vivo anastomoses were widely patent with healthy mucosa and no evidence of stricture. At 6 weeks post-device placement, HOMA-IR improved to below baseline values (p < 0.05). Total weight also decreased in a linear fashion (R2 = 0.97) with total weight loss at 6 weeks post-device placement of 14.4% (p < 0.05).
Conclusion
The use of this novel magnetic compression device to create a limited caliber side-to-side jejunoileal anastomosis is safe and likely feasible in a nonhuman primate model. The observed glucoregulatory and metabolic effects of a partial jejunoileal bypass with this device warrant further investigation to validate the long-term glucometabolic impact of this approach.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Surgery
Reference50 articles.
1. Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia. 2018;61(2):257–64.
2. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.
3. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. 2016;39(6):893–901.
4. Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103.
5. Hage MP, Safadi B, Salti I, et al. Role of gut-related peptides and other hormones in the amelioration of type 2 diabetes after Roux-en-Y gastric bypass surgery. ISRN Endocrinol. 2012;2012:504756.