Chemical looping: a technology platform for upcycling low-grade industrial resources

Author:

Singh Varun,Buelens Lukas C.,Poelman Hilde,Marin Guy B.,Galvita Vladimir V.

Abstract

AbstractAmbitions towards a circular economy are increasingly vocalised across academia, policymaking and industry. The endeavour of realising these ambitions provides major opportunities and challenges in chemical engineering, and requires a tremendous roll-out of new technologies. This perspective highlights the suitability of chemical looping as a technology platform to contribute to the valorisation of material streams that are currently not used to their full potential, termed low-grade resources. Such material streams offer significant opportunities to minimise CO2 emissions and accelerate towards a circular materials economy. Apart from defining and identifying low-grade streams, both calorific and non-calorific, a non-exhaustive overview of such streams is provided. Based on a selection of case studies focusing on steel mill gases, bauxite residue, pyrite cinder, calcium carbide slag and automotive shredder residue, it is posited that the characteristics and flexibility of the chemical looping approach offer ample possibilities to efficiently reuse low-grade streams and minimise their environmental impact. Finally, an outlook on chemical looping as a technology platform and its possible role in the drive towards circularity is given, with attention for the roles of industrial, academic and governmental stakeholders. In order to assess the suitability of a chemical looping process for valorising low-grade resources, the importance of holistic technology investigations is stressed, taking into account technical, economic, ecological and societal considerations.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3