Author:
Duff Lisa,Scarsbrook Andrew F.,Mackie Sarah L.,Frood Russell,Bailey Marc,Morgan Ann W.,Tsoumpas Charalampos
Abstract
Abstract
Background
The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography (FDG PET–CT) images.
Methods
The aorta was manually segmented on FDG PET–CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth.
Results
Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00.
Conclusion
A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献