The concept of the mobilized domain: how it can explain and predict the forces exerted by a cohesive granular avalanche on an obstacle

Author:

Kyburz M. L.ORCID,Sovilla B.ORCID,Gaume J.ORCID,Ancey C.ORCID

Abstract

Abstract The calculation of the impact pressure on obstacles in granular flows is a fundamental issue of practical relevance, e.g. for snow avalanches impacting obstacles. Previous research shows that the load on the obstacle builds up, due to the formation of force chains originating from the obstacle and extending into the granular material. This leads to the formation of a mobilized domain, wherein the flow is influenced by the presence of the obstacle. To identify the link between the physical mobilized domain properties and the pressure exerted on obstacles, we simulate subcritical cohesionless and cohesive avalanches of soft particles past obstacles with circular, rectangular or triangular cross-section using the Discrete Element Method. Our results show that the impact pressure decreases non-linearly with increasing obstacle width, regardless of the obstacle’s cross-section. While the mobilized domain size is proportional to the obstacle width, the pressure decrease with increasing width originates from the jammed material inside the mobilized domain. We provide evidence that the compression inside the mobilized domain governs the pressure build-up for cohesionless subcritical granular flows. In the cohesive case, the stress transmission in the compressed mobilized domain is further enhanced, causing a pressure increase compared with the cohesionless case. Considering a kinetic and a gravitational contribution, we are able to calculate the impact pressure based on the properties of the mobilized domain. The equations used for the pressure calculation in this article may be useful in future predictive pressure calculations based on mobilized domain properties. Graphic Abstract

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3