Cooling after shearing: three possible fates for dense granular materials

Author:

Berzi DiegoORCID,Vescovi Dalila

Abstract

AbstractWe perform discrete element simulations of freely cooling, dense granular materials, previously sheared at a constant rate. Particles are identical, frictional spheres interacting via linear springs and dashpots and the solid volume fraction is constant and equal to 60% during both shearing and cooling. We measure the average and the distributions of contacts per particle and the anisotropy of the contact network. We observe that the granular material, at the beginning of cooling, can be shear-jammed, fragile or unjammed. The initial state determines the subsequent evolution of the dense assembly into either an anisotropic solid, an isotropic or an anisotropic fluid, respectively. While anisotropic solids and isotropic fluids rapidly reach an apparent final steady configuration, the microstructure continues to evolve for anisotropic fluids. We explain this with the presence of vortices in the flow field that counteract the randomizing and structure-annihilating effect of collisions. We notice, in accordance with previous findings, that the initial fraction of mechanically stable particles permits to distinguish between shear-jammed, fragile or unjammed states and, therefore, determine beforehand the fate of the freely evolving granular materials. We also find that the fraction of mechanically stable particles is in a one-to-one relation with the average number of contacts per particle. The latter is, therefore, a variable that must be incorporated in continuum models of granular materials, even in the case of unjammed states, where it was widely accepted that the solid volume fraction was sufficient to describe the geometry of the system.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3