Abstract
AbstractWe present a critical comparative analysis between numerical and experimental results of quasi-two-dimensional silo and hopper flows. In our approach, the Discrete Element Method was employed to describe a single-layer mono-disperse sphere confined by two parallel walls with an orifice at the bottom. As a first step, we examined the discharge process, varying the size of the outlet and the hopper angle. Next, we set the simulation parameters fitting the experimental flow rate values obtained experimentally. Remarkably, the numerical model captured the slight non-monotonic dependence of the flow rate with the hopper angle, which was detected experimentally. Additionally, we analyzed the vertical velocity and solid fractions profiles at the outlet numerically and experimentally. Although numerical results also agreed with the experimental observations, a slight deviation appeared systematically between both approaches. Finally, we explored the impact of the system’s confinement on this process, examining the consequences of particle-particle and particle-wall friction on the system macroscopic response. We mainly found that the degree of confinement and particle-wall friction have a relevant impact on the outflow dynamics. Our analysis demonstrated that the naive 2D approximation of this 3D flow process fails to describe it accurately.
Funder
Ministerio de Ciencia, Innovación y Universidades
Universidad de Navarra
Consejo Nacional de Ciencia y Tecnología
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Mechanics of Materials,General Materials Science
Reference36 articles.
1. Knowlton, T.M., Klinzing, G., Yang, W., Carson, J.: The importance of storage, transfer, and collection. Chem. Eng. Progr. (United States) 90(4), (1994)
2. Brown, C.J., Nielsen, J.: Silos: fundamentals of theory, behaviour and design. CRC Press, Boca Raton (1998)
3. Dogangun, A., Karaca, Z., Durmus, A., Sezen, H.: Cause of damage and failures in silo structures. J. Perform. Constr. Facil. 23(2), 65 (2009)
4. To, K.: Jamming transition in two-dimensional hoppers and silos. Phys. Rev. E 71, 060301 (2005)
5. Aguirre, M.A., Grande, J.G., Calvo, A., Pugnaloni, L.A., Géminard, J.C.: Granular flow through an aperture: Pressure and flow rate are independent. Phys. Rev. E 83, 061305 (2011)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献