Experimental Validation is Always Required for Molten Oxide Electrolysis Laboratory Crucibles

Author:

Ford Kathryn T.,Marshall Aaron T.,Watson Matthew J.,Bishop Catherine M.ORCID

Abstract

AbstractMolten oxide electrolysis (MOE) is a promising electrochemical route to de-carbonize primary and secondary metal production. Developing MOE processes starts with laboratory experiments at temperatures > $$1000\,^\circ{\rm C}$$ 1000 C lasting ~10 hours and requiring long heating/cooling times to protect furnace hardware. Before investigating MOE processes, crucibles must be selected that tolerate the required temperatures while minimizing chemical interactions with the oxide to control melt contamination and contain the melt. Unfortunately no general procedure guiding MOE crucible selection is documented. Here we focus on laboratory crucibles in air for two MOE melts: titania-sodia at $$1100\,^\circ{\rm C}$$ 1100 C and neodymia-boria at $$1300\,^\circ{\rm C}$$ 1300 C . After shortlisting generic crucible materials using Ashby’s method, thermodynamic predictions were made for all-oxide titania-sodia charges using FactSage and cup test experiments were conducted on (i) all-oxide and carbonate charges for titania-sodia and (ii) neodymia-boria charges. While magnesia was predicted to be the best crucible for the titania-sodia melt, alumina was the best choice for both oxide and carbonate charges. The grain boundary networks of both magnesia and YSZ were infiltrated by the oxide and carbonate charges. Platinum was the best crucible for neodymia-boria melts. We show that compositional control during long, high-temperature MOE experiments requires experimental validation for specific chemistries every time.

Funder

University of Canterbury

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3