Fluid Dynamics Effects on Microstructure Prediction in Single-Laser Tracks for Additive Manufacturing of IN625

Author:

Sabau Adrian S.,Yuan Lang,Raghavan Narendran,Bement Matthew,Simunovic Srdjan,Turner John A.,Gupta Vipul K.

Abstract

AbstractSingle-track laser fusion were simulated using a heat-transfer-solidification-only (HTS) model and its extension with fluid dynamics (HTS_FD) model using a parallel open-source code, which included laminar fluid dynamics, flat-free surface of the molten alloy, heat transfer, phase-change, evaporation, and surface tension phenomena. The results illustrate that the fluid dynamics affects the solidification and ensuing microstructure. For the HTS_FD simulations, thermal gradient, G was found to exhibit a maximum at the extremity of the solidified pool (i.e., at the free surface), while for HTS simulations, G exhibited a maximum around the entire edge of the solidified pool. HTS_FD simulations predicted a wider range of cooling rates than the HTS simulations, exhibited an increased spread in the solidification speed, V variation within the melt-pool with respect to the HTS model results. Primary dendrite arm spacing (PDAS) were evaluated based on power law correlations and marginal stability theory models using the (G, V) from HTS and HTS_FD simulations to quantify the effect of the fluid dynamics on the microstructure. At low-laser powers and low-scan speeds, the PDAS obtained with the fluid dynamics model (HTS_FD) was larger by more than 30 pct with respect to the PDAS calculated with the simple HTS model. A new PDAS correlation, i.e., $$ \lambda_{1} \left[ {\mu {\text{m}}} \right] = 832\;G\left[ {\text{K/m}} \right]^{ - 0.5} V\left[ {\text{m/s}} \right]^{ - 0.25} $$ λ 1 μ m = 832 G K/m - 0.5 V m/s - 0.25 , which uses the (G, V) results from the HTS_FD model was developed and validated against experimental results.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3