Mathematical Modeling of the Early Stage of Clogging of the SEN During Continuous Casting of Ti-ULC Steel

Author:

Barati Hadi,Wu Menghuai,Michelic Susanne,Ilie Sergiu,Kharicha Abdellah,Ludwig Andreas,Kang Youn-Bae

Abstract

AbstractThe clogging of the submerged entry nozzle (SEN) during the continuous casting of steel can be divided into two stages: the “early stage,” when the initial layer of the clog covers the SEN refractory surface owing to chemical reactions, and the “late stage,” when the clog layer continues to grow because of the deposition of non-metallic inclusions (NMIs). In this paper, a mathematical formulation is proposed for the build-up of the initial oxide. The chemical reaction mechanism is based on the work of Lee and Kang (Lee et al. in ISIJ Int 58:1257–1266, 2018): a reaction among SEN refractory constituents produces CO gas, which can re-oxidize the steel melt and consequently form an oxide layer on the SEN surface. The proposed formulation was further incorporated as a sub-model in a transient clogging model, which was previously developed by the current authors to track the late stage of clogging. The thermodynamics and kinetics of CO production, depending on the local pressure and temperature, must be considered for the sub-model of early-stage clogging. Test simulations based on a section of an actual industrial SEN were conducted, and it was verified that the clogging phenomenon is related to the SEN refractory, the chemical reaction with the steel melt, the local temperature and pressure, and the transport of NMIs by the turbulent melt flow in the SEN. The model was qualitatively validated through laboratory experiments. The uncertainty of some parameters that govern the reaction kinetics and permeability of the oxide layer is discussed.

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. J.V. Barbosa, T.M.F. de Melo, and D.B. Santos: J. Mater. Res. Technol., 2020, vol. 9, pp. 2810–7.

2. K. Sasai and Y. Mizukami: ISIJ Int., 1994, vol. 34, pp. 802–9.

3. K. Sasai and Y. Mizukami: ISIJ Int., 1995, vol. 35, pp. 26–33.

4. S. Rödl, H. Schuster, S. Ekerot, G. Xia, N. Veneri, F. Ferro, S. Baragiola, P. Rossi, S. Fera, V. Colla, and et al.: New Strategies for Clogging Prevention for Improved Productivity and Steel Quality, 2012.

5. H. Cui, Y. Bao, M. Wang, and W. Wu: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 154–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3