Modelling the Nucleation, Growth and Agglomeration of Alumina Inclusions in Molten Steel by Combining Kampmann–Wagner Numerical Model with Particle Size Grouping Method

Author:

Shu Qifeng,Alatarvas Tuomas,Visuri Ville-Valtteri,Fabritius Timo

Abstract

AbstractRecent inclusion models are mainly focused on the compositional evolution of inclusion, steel and slag. Due to the importance of inclusion size distribution to steel properties, the evolution of inclusion size distributions should also be accounted for. As the first step to establish a model to predict the evolution of inclusion size distribution, the nucleation, growth and removal of alumina inclusions in molten steel were modeled by combining Kampmann and Wagner numerical model for nucleation, growth and coarsening with particle size grouping method. The model could simulate the time evolution of the size distribution of alumina inclusions after aluminum de-oxidation. The model was validated by using the experimental size distribution data of alumina inclusions available in the literature. The model calculation results were also compared with previous simulation results. The influences of interfacial tension between steel and inclusion and diffusion coefficient on the calculated inclusion size distribution were investigated. As interfacial tension between steel and alumina increases, the maximum number density decreases and the peak value of radius increases. As diffusion coefficient increases, the maximum number density decreases and the peak-value radius increases. The calculated size distribution curves showed a change from log normal to fractal, which is due to the change of dominating mechanisms for crystal growth and agglomeration.

Funder

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3