Experimental Evaluation of MHD Modeling of EMS During Continuous Casting

Author:

Zhang Haijie,Wu Menghuai,Zhang Zhao,Ludwig Andreas,Kharicha Abdellah,Rónaföldi Arnold,Roósz András,Veres Zsolt,Svéda Mária

Abstract

AbstractElectromagnetic stirring (EMS) has been recognized as a mature technique in steel industry to control the as-cast structure of steel continuous casting (CC), and computational magnetohydrodynamic (MHD) methods have been applied to study the EMS efficiency. Most MHD methods de-coupled the calculations of electromagnetic and flow fields or simplifications were made for the flow–electromagnetic interactions. However, the experimental validations of the MHD modeling have been rarely reported or very limited. In this study, we present a benchmark, i.e., a series of laboratory experiments, to evaluate the MHD methods, which have been typically applied for steel CC process. Specifically, a rotating magnetic field (RMF) with variable intensity and frequency is considered. First experiment is performed to measure the distribution of magnetic field without any loaded sample (casting); the second experiment is conducted to measure the RMF-induced torque on a cylindrical sample (different metals/alloys in solid state); the third experiment is (based on a special device) to measure the RMF-induced rotational velocity of the liquid metal (Ga75In25), which is enclosed in a cylindrical crucible. The MHD calculation is performed by coupling ANSYS Maxwell and ANSYS Fluent. The Lorentz force, as calculated by analytical equations, ANSYS Fluent addon MHD module, and external electromagnetic solver, is added as the source term in Navier–Stokes equation. By comparing the simulation results with the benchmark experiments, the calculation accuracy with different coupling methods and modification strategies is evaluated. Based on this, a necessary simplification strategy of the MHD method for CC is established, and application of the simplified MHD method to a CC process is demonstrated.

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3