Abstract
AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics
Reference51 articles.
1. K. Meijer, M. Denys, J. Lasar, J.-P. Birat, G. Still and B. Overmaat: Ironmak. Steelmak., 2009, vol. 36, pp. 249-51.
2. K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand and J. van der Stel: Trans. Ind. Inst. Metals, 2013, vol. 66, pp. 475-81.
3. Y. Qu, Experimental Study of the Melting and Reduction Behaviour of Ore Used in the HIsarna Process (PhD thesis), Delft University of Technology, Delft, The Netherlands, 2013.
4. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer and R. Boom: ISIJ Int., 2014, vol. 54, pp. 2196-205.
5. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer and R. Boom: ISIJ Int., 2015, vol. 55, pp. 149-57.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献