Spatially Resolved Velocity Mapping of the Melt Plume During High-Pressure Gas Atomization of Liquid Metals

Author:

Bigg T. D.,Mullis A. M.

Abstract

AbstractWe present details of an image analysis algorithm designed specifically to determine the velocity of material in the melt plume during high-pressure, close-coupled gas atomization. Following high-speed filming (16,000 fps) pairs of images are used to identify and track dominant features within the plume. Due to the complexity of the atomization plume, relatively few features are tracked between any given pair of images, but by averaging over the many thousands of frames obtained during high-speed filming a spatially resolved map of the average velocity of material in the plume can be built up. Velocities in the plume are typically very low compared to that of the supersonic gas, being around 30 m s−1 on the margins of the plume where the melt interacts strongly with the gas and dropping to < 10 m s−1 in the center of the melt plume. Consequently, the efficiency of the atomizer in transferring kinetic energy from the gas to the melt is correspondingly very low, with this being estimated as being no more than 0.1 pct.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3