Abstract
AbstractThis paper investigates the effect of nitriding potential under well-defined gas nitriding conditions on the formation and growth of a compound layer called “white layer” on a FeAl40 (with the composition of 40 at. pct Al) iron aluminide alloy. The nitriding potential was systematically varied in the range of 0.1 to 1.75 bar−1/2 at 590 °C for 5 hour nitriding time with an ammonia-hydrogen-nitrogen atmosphere. Characterization of the microstructure and phases formed within the white layer was performed using optical and scanning electron microscopy, X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and glow discharge optical emission spectroscopy (GDOES). Experimental results indicated that the nitriding potential strongly influences morphology and crystal structure of the white layer. The nitride compound layer consists of the phases γ′-Fe4N, ε-Fe2-3N, and AlN. A mechanism is proposed for the formation and growth of the white layer, depending on the effect of the nitriding potential.
Funder
Technische Universität Bergakademie Freiberg
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献