Experimental Study on the Chemical Stability of Phosphate-Bonded Al2O3-Based Ceramic Foam Filters (CFFs)

Author:

Bergin Are,Voigt Claudia,Fritzsch Robert,Akhtar Shahid,Arnberg Lars,Aneziris Christos G.,Aune Ragnhild E.

Abstract

AbstractProduction of high-quality aluminum products requires an extensive melt treatment process, even more so with the increasing focus on recycling and sustainability. Filtration is a commonly used process segment for removal of non-metallic inclusions in aluminum, and ceramic foam filters (CFFs) are often used as the filtration media. In the present study, the chemical stability of phosphate-bonded Al2O3-based CFFs has been investigated. Three filters with different chemical compositions have been submerged into pure aluminum (with traces of Mg) and in an aluminum-magnesium melt (~ 2 wt pct Mg) at 730 °C. In addition to filter characterization before and after exposure to molten metal, using various imaging and X-ray techniques, the melt itself was analyzed by spark optical emission spectroscopy. The generation of phosphine gas was also measured by the use of Dräger tubes, and thermodynamic calculations performed using FactSage™. The phosphate-bonded filters were observed to react with the magnesium present in the molten aluminum even at very low magnesium concentrations (0.00035 wt pct), and as the magnesium concentration increased the severity of the degradation became more and more evident. The exposure time proved to have detrimental effect on the filter structure, with pieces of the filter struts broken off causing melt contamination. Severe filter degradation also resulted in color changes with accompanying diffusion of magnesium and phosphorus to and from the filter, respectively. Moreover, phosphine gas was released in amounts exceeding recommended exposure limits when the filter came in contact with the humidity in the air after testing. Good agreement was established to exist between the results from the thermodynamic calculations performed and the experimental results.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. K. Schwartzwalder and A.V. Somers: U.S. Patent No. 3 090 094A, United States Patent Office, 1963.

2. The Free Library: American Foundry Society Inc.: History of Ceramic Foam Filtration. (Aluminum Silver Anniversary Paper)., https://www.thefreelibrary.com/History+of+Ceramic+Foam+Filtration.+(Aluminum+Silver+Anniversary…-a0103795701, (accessed 18 September 2019).

3. M.J. Pryor and T.J. Gray: U.S. Patent No. 3 947 363A, United States Patent Office, 1976.

4. J.C. Yarwood, J.E. Dore, and R.K. Preuss: U.S. Patent No. 3 962 081A, United States Patent Office, 1976.

5. J.W. Brockmeyer: U.S. Patent No. 4 343 704, United States Patent Office, 1982.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3