Author:
Yang Jiawei,Bao Sarina,Akhtar Shahid,Shen Ping,Li Yanjun
Abstract
AbstractIt is well known that grain refiner additions in aluminum melts significantly reduce the filtration efficiency of ceramic foam filters (CFF). However, the mechanism remains unclear. In this work, the influence of grain refiners on the wettability of alumina substrate by aluminum melt was studied by both conventional sessile drop and improved sessile drop methods at different temperatures and vacuums. Commercial purity aluminum (CP-Al) and grain refiner master alloys Al-3Ti-1B, Al-5Ti-1B, Al-3Ti-0.15C were used. It is found that master alloy melts wet alumina substrate better than CP-Al. Generally, a lower temperature or lower vacuum results in a higher contact angle. The roles of grain refiner particles in improving the wettability were studied by analyzing the solidification structure of post wetting-test droplets using SEM. Strong sedimentation of grain refiner particles at the metal-substrate interface was observed, which is attributed to the higher density of grain refiner particles compared to the Al melt. Meanwhile, a large fraction of grain refiner particles agglomerates at the oxide skin of the aluminum droplets, showing a strong adhesion between the particles and oxide skin. Such adhering of grain refiner particles is proposed to enhance the rupture of the original oxide skin of the droplets and slow down the reoxidation process at the surface layer. Both adherence of grain refiner particles to surface oxide skin and sedimentation of particles at the metal-substrate interface are responsible for the wetting improvement.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics
Reference50 articles.
1. L.N.W. Damoah and L. Zhang: Acta Mater., 2011, vol. 59, pp. 896-913.
2. H.-Y. Hwang, C.-H. Nam, Y.-S. Choi, J.-H. Hong and X. Sun: China Foundry, 2017, vol. 14, pp. 216-225.
3. S. Bao, M. Syvertsen, A. Kvithyld and T. Engh: T Nonferr Metal Soc, 2014, vol. 24, pp. 3922-3928.
4. G. Song, B. Song, Z. Yang, Y. Yang and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3435-3445.
5. H. Görner: Ph.D. thesis, Norwegian University of Science and Technology, 2009.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献