Vignette-based comparative analysis of ChatGPT and specialist treatment decisions for rheumatic patients: results of the Rheum2Guide study

Author:

Labinsky HannahORCID,Nagler Lea-KristinORCID,Krusche MartinORCID,Griewing SebastianORCID,Aries PeerORCID,Kroiß AnjaORCID,Strunz Patrick-PascalORCID,Kuhn SebastianORCID,Schmalzing MarcORCID,Gernert MichaelORCID,Knitza JohannesORCID

Abstract

Abstract Background The complex nature of rheumatic diseases poses considerable challenges for clinicians when developing individualized treatment plans. Large language models (LLMs) such as ChatGPT could enable treatment decision support. Objective To compare treatment plans generated by ChatGPT-3.5 and GPT-4 to those of a clinical rheumatology board (RB). Design/methods Fictional patient vignettes were created and GPT-3.5, GPT-4, and the RB were queried to provide respective first- and second-line treatment plans with underlying justifications. Four rheumatologists from different centers, blinded to the origin of treatment plans, selected the overall preferred treatment concept and assessed treatment plans’ safety, EULAR guideline adherence, medical adequacy, overall quality, justification of the treatment plans and their completeness as well as patient vignette difficulty using a 5-point Likert scale. Results 20 fictional vignettes covering various rheumatic diseases and varying difficulty levels were assembled and a total of 160 ratings were assessed. In 68.8% (110/160) of cases, raters preferred the RB’s treatment plans over those generated by GPT-4 (16.3%; 26/160) and GPT-3.5 (15.0%; 24/160). GPT-4’s plans were chosen more frequently for first-line treatments compared to GPT-3.5. No significant safety differences were observed between RB and GPT-4’s first-line treatment plans. Rheumatologists’ plans received significantly higher ratings in guideline adherence, medical appropriateness, completeness and overall quality. Ratings did not correlate with the vignette difficulty. LLM-generated plans were notably longer and more detailed. Conclusion GPT-4 and GPT-3.5 generated safe, high-quality treatment plans for rheumatic diseases, demonstrating promise in clinical decision support. Future research should investigate detailed standardized prompts and the impact of LLM usage on clinical decisions.

Funder

GlaxoSmithKline Biologicals

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Smolen JS, Landewe RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, Caporali R, Edwards CJ, Hyrich KL, Pope JE, de Souza S, Stamm TA, Takeuchi T, Verschueren P, Winthrop KL, Balsa A, Bathon JM, Buch MH, Burmester GR, Buttgereit F, Cardiel MH, Chatzidionysiou K, Codreanu C, Cutolo M, den Broeder AA, El Aoufy K, Finckh A, Fonseca JE, Gottenberg JE, Haavardsholm EA, Iagnocco A, Lauper K, Li Z, McInnes IB, Mysler EF, Nash P, Poor G, Ristic GG, Rivellese F, Rubbert-Roth A, Schulze-Koops H, Stoilov N, Strangfeld A, van der Helm-van MA, van Duuren E, Vliet Vlieland TPM, Westhovens R, van der Heijde D (2023) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis 82(1):3–18. https://doi.org/10.1136/ard-2022-223356

2. Labinsky H, Ukalovic D, Hartmann F, Runft V, Wichmann A, Jakubcik J, Gambel K, Otani K, Morf H, Taubmann J, Fagni F, Kleyer A, Simon D, Schett G, Reichert M, Knitza J (2023) An AI-powered clinical decision support system to predict flares in rheumatoid arthritis: a pilot study. Diagnostics (Basel). https://doi.org/10.3390/diagnostics13010148

3. Griewing S, Knitza J, Boekhoff J, Hillen C, Lechner F, Wagner U, Wallwiener M, Kuhn S (2024) Evolution of publicly available large language models for complex decision-making in breast cancer care. Arch Gynecol Obstet 310(1):537–550. https://doi.org/10.1007/s00404-024-07565-4

4. Hugle T (2023) The wide range of opportunities for large language models such as ChatGPT in rheumatology. RMD Open. https://doi.org/10.1136/rmdopen-2023-003105

5. Madrid-Garcia A, Rosales-Rosado Z, Freites-Nunez D, Perez-Sancristobal I, Pato-Cour E, Plasencia-Rodriguez C, Cabeza-Osorio L, Abasolo-Alcazar L, Leon-Mateos L, Fernandez-Gutierrez B, Rodriguez-Rodriguez L (2023) Harnessing ChatGPT and GPT-4 for evaluating the rheumatology questions of the Spanish access exam to specialized medical training. Sci Rep 13(1):22129. https://doi.org/10.1038/s41598-023-49483-6

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3