Incorporating the inflammation-related parameters enhances the performance of the nomogram for predicting local control in lung cancer patients treated with stereotactic body radiation therapy

Author:

Huang Bao-Tian,Lin Pei-Xian,Luo Li-Mei,Wang Ying

Abstract

Abstract Purpose The study aims to investigate whether including the inflammation-related parameters would enhance the accuracy of a nomogram for local control (LC) prediction in lung cancer patients undergoing stereotactic body radiation therapy (SBRT). Methods 158 primary or metastatic lung cancer patients treated with SBRT were retrospectively analyzed. The clinical, dosimetric and inflammation-related parameters were collected for the Cox regression analysis. The ACPB model was constructed by employing the clinical and dosimetric factors. And the ACPBLN model was established by adding the inflammation-related factors to the ACPB model. The two models were compared in terms of ROC, Akaike Information Criterion (AIC), C-index, time-dependent AUC, continuous net reclassification index (NRI), integrated discrimination improvement (IDI), calibration plots and decision curve analysis (DCA). Results Multivariate Cox regression analysis revealed that six prognostic factors were independently associated with LC, including age, clinical stage, planning target volume (PTV) volume, BED of the prescribed dose (BEDPD), the lymphocyte count and neutrocyte count. The ACPBLN model performed better in AIC, bootstrap-corrected C-index, time-dependent AUC, NRI and IDI than the ACPB model. The calibration plots showed good consistency between the probabilities and observed values in the two models. The DCA curves showed that the ACPBLN nomogram had higher overall net benefit than the ACPB model across a majority of threshold probabilities. Conclusion The inflammation-related parameters were associated with LC for lung cancer patients treated with SBRT. The inclusion of the inflammation-related parameters improved the predictive performance of the nomogram for LC prediction.

Funder

National Natural Science Foundation of China

Guangdong Medical Research Foundation

Shantou Science and Technology Project

Guangdong Provincial Enterprise Joint Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3