Necroptosis-related lncRNA-based novel signature to predict the prognosis and immune landscape in soft tissue sarcomas

Author:

Long Qiuzhong,Li Zhengtian,Yang Wenkang,Huang Ke,Du Gang

Abstract

Abstract Background Necroptosis-related long noncoding RNAs (lncRNAs) play crucial roles in cancer initiation and progression. Nevertheless, the role and mechanism of necroptosis-related lncRNAs in soft tissue sarcomas (STS) is so far unknown and needs to be explored further. Methods Clinical and genomic data were obtained from the UCSC Xena database. All STS patients’ subclusters were performed by unsupervised consensus clustering method based on the prognosis-specific lncRNAs, and then assessed their survival advantage and immune infiltrates. In addition, we explored the pathways and biological processes in subclusters through gene set enrichment analysis. At last, we established the necroptosis-related lncRNA-based risk signature (NRLncSig) using the least absolute shrinkage and selection operator (LASSO) method, and explored the prediction performance and immune microenvironment of this signature in STS. Results A total of 911 normal soft tissue samples and 259 STS patients were included in current study. 39 prognosis-specific necroptosis-related lncRNAs were selected. Cluster 2 had a worse survival than the cluster 1 and characterized by different immune landscape in STS. A worse outcome in the high-risk group was observed by survival analysis and indicated an immunosuppressive microenvironment. The ROC curve analyses illustrated that the NRLncSig performing competitively in prediction of prognosis for STS patients. In addition, the nomogram presents excellent performance in predicting prognosis, which may be more beneficial towards STS patients’ treatment. Conclusions Our result indicated that the NRLncSig could be a good independent predictor of prognosis, and significantly connected with immune microenvironment, thereby providing new insights into the roles of necroptosis-related lncRNAs in STS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3