A novel subtype based on driver methylation–transcription in lung adenocarcinoma

Author:

Wang Xin,Xu Zhenyi,Zhao Shuang,Song Jiali,Yu Yipei,Yang Han,Hou Yan

Abstract

Abstract Aims To identify driver methylation genes and a novel subtype of lung adenocarcinoma (LUAD) by multi-omics and elucidate its molecular features and clinical significance. Methods We collected LUAD patients from public databases, and identified driver methylation genes (DMGs) by MethSig and MethylMix algrothms. And novel driver methylation multi-omics subtypes were identified by similarity network fusion (SNF). Furthermore, the prognosis, tumor microenvironment (TME), molecular features and therapy efficiency among subtypes were comprehensively evaluated. Results 147 overlapped driver methylation were identified and validated. By integrating the mRNA expression and methylation of DMGs using SNF, four distinct patterns, termed as S1-S4, were characterized by differences in prognosis, biological features, and TME. The S2 subtype showed unfavorable prognosis. By comparing the characteristics of the DMGs subtypes with the traditional subtypes, S3 was concentrated in proximal-inflammatory (PI) subtype, and S4 was consisted of terminal respiratory unit (TRU) subtype and PI subtype. By analyzing TME and epithelial mesenchymal transition (EMT) features, increased immune infiltration and higher expression of immune checkpoint genes were found in S3 and S4. While S4 showed higher EMT score and expression of EMT associated genes, indicating S4 may not be as immunosensitive as the S3. Additionally, S3 had lower TIDE and higher IPS score, indicating its increased sensitivity to immunotherapy. Conclusion The driver methylation-related subtypes of LUAD demonstrate prognostic predictive ability that could help inform treatment response and provide complementary information to the existing subtypes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3