Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer

Author:

Jung Jin-OnORCID,Crnovrsanin Nerma,Wirsik Naita Maren,Nienhüser Henrik,Peters Leila,Popp Felix,Schulze André,Wagner Martin,Müller-Stich Beat Peter,Büchler Markus Wolfgang,Schmidt ThomasORCID

Abstract

Abstract Purpose Surgical oncologists are frequently confronted with the question of expected long-term prognosis. The aim of this study was to apply machine learning algorithms to optimize survival prediction after oncological resection of gastroesophageal cancers. Methods Eligible patients underwent oncological resection of gastric or distal esophageal cancer between 2001 and 2020 at Heidelberg University Hospital, Department of General Surgery. Machine learning methods such as multi-task logistic regression and survival forests were compared with usual algorithms to establish an individual estimation. Results The study included 117 variables with a total of 1360 patients. The overall missingness was 1.3%. Out of eight machine learning algorithms, the random survival forest (RSF) performed best with a concordance index of 0.736 and an integrated Brier score of 0.166. The RSF demonstrated a mean area under the curve (AUC) of 0.814 over a time period of 10 years after diagnosis. The most important long-term outcome predictor was lymph node ratio with a mean AUC of 0.730. A numeric risk score was calculated by the RSF for each patient and three risk groups were defined accordingly. Median survival time was 18.8 months in the high-risk group, 44.6 months in the medium-risk group and above 10 years in the low-risk group. Conclusion The results of this study suggest that RSF is most appropriate to accurately answer the question of long-term prognosis. Furthermore, we could establish a compact risk score model with 20 input parameters and thus provide a clinical tool to improve prediction of oncological outcome after upper gastrointestinal surgery.

Funder

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3