Differential expression of stem cell markers in proliferating cells in glioma

Author:

Rehfeld Marten,Matschke Jakob,Hagel Christian,Willenborg Kerstin,Glatzel Markus,Bernreuther ChristianORCID

Abstract

Abstract Purpose The identification of prognostically and therapeutically relevant molecular markers is fundamental to the further development of personalised therapies in brain tumours. Current therapeutic options for the treatment of gliomas rely mainly on surgical resection and the inhibition of tumour cell proliferation by irradiation and chemotherapy. Glioma stem cells are a subpopulation of proliferating tumour cells that have self-renewal capacity and can give rise to heterogeneous cells that comprise the tumour and are thought to play a role in the resistance of gliomas to therapy. The aim of this study was to evaluate the expression of markers of glioma stem cells and differentiated glial cells in proliferating glioma cells in comparison to the overall expression of the respective markers in the tumour tissue. Methods Tissue microarrays were assembled from specimen of pilocytic astrocytoma, diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, oligodendroglioma, anaplastic oligodendroglioma, ependymoma, and anaplastic ependymoma. These were immunohistochemically double stained with antibodies against the proliferation-associated antigen Ki67 and marker proteins for glioma stem cells (CD133, Nestin, Musashi, CD15, CD44), and differentiated glioma cells (GFAP, MAP2c). Results The expression of both glial and glioma stem cell markers differs between proliferating and non-proliferating glioma cells. Furthermore, the proliferating cells in the different glial tumour entities show a different expression profile. Conclusion Further analysis of marker expression in proliferating glioma cells and correlation with clinical outcome and susceptibility to irradiation and chemotherapy might help establish new biomarkers and therapies for glioma.

Funder

Universitätsklinikum Hamburg-Eppendorf (UKE)

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3