Author:
Zhu Xiaodan,Yu Bo,Shen Yanli,Zhao Yan,Fu Xiyujing,Zhu Yunji,Gu Guomin,Liu Chunling
Abstract
Abstract
Purpose
Immunotherapy plays an important role in non-small cell lung cancer (NSCLC); in particular, immune checkpoint inhibitors (ICIs) therapy has good therapeutic effects in PD-L1-positive patients. This study aims to screen NSCLC patients with PD-L1-positive expression and select effective biomarkers for ICI immunotherapy.
Methods
Collected tumor samples from the Affiliated Cancer Hospital of Xinjiang Medical University and 117 patients with stage III–IV NSCLC were included in the study. All patients were on first- or second-line therapy and not on targeted therapy. Based on the molecular profiles and clinical features, we screened biomarkers for predicting the efficacy of immunotherapy in patients with PD-L1 overexpression.
Results
117 NSCLC patients receiving ICIs immunotherapy were enrolled. First, we found that immunotherapy was more effective in patients with positive PD-L1 expression. Second, we found that ROS1 gene mutations, KRAS gene mutations, tumor stage, and the endocrine system diseases history are independent prognostic factors for PD-L1 positive patients. Then we combined independent risk factors and constructed a new Nomogram to predict the therapeutic efficacy of ICIs immunotherapy in PD-L1 positive patients. The Nomogram integrates these factors into a prediction model, and the predicted C-statistic of 3 months, 6 months and 12 months are 0.85, 0.84 and 0.85, which represents the high predictive accuracy of the model.
Conclusions
We have established a model that can predict the efficacy of ICIs immunotherapy in PD-L1 positive patients. The model consists of ROS1 gene mutations, KRAS gene mutations, tumor staging, and endocrine system disease history, and has good predictive ability.
Funder
Department of Science and Technology of Xinjiang Uygur Autonomous Region
Life Oasis Public Welfare Service Center in Qujiang District, Quzhou City
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献